Detecting Projected Outliers in High-Dimensional Data Streams

نویسندگان

  • Ji Zhang
  • Qigang Gao
  • Hai H. Wang
  • Qing Liu
  • Kai Xu
چکیده

In this paper, we study the problem of projected outlier detection in high dimensional data streams and propose a new technique, called Stream Projected Ouliter deTector (SPOT), to identify outliers embedded in subspaces. Sparse Subspace Template (SST), a set of subspaces obtained by unsupervised and/or supervised learning processes, is constructed in SPOT to detect projected outliers effectively. MultiObjective Genetic Algorithm (MOGA) is employed as an effective search method for finding outlying subspaces from training data to construct SST. SST is able to carry out online self-evolution in the detection stage to cope with dynamics of data streams. The experimental results demonstrate the efficiency and effectiveness of SPOT in detecting outliers in high-dimensional data streams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier detection for high dimensional data pdf

Is particularly useful for high dimensional data where outliers cannot be found.High dimensional data in Euclidean space pose special challenges to data. In about just the last few years, the task of unsupervised outlier detection has found.Outlier detection is an outstanding data mining task referred to open pdf with mac word class="text" href="https://tokiqivy.files.wordpress.com/2015/06/opel...

متن کامل

Robust Subspace Outlier Detection in High Dimensional Space

Rare data in a large-scale database are called outliers that reveal significant information in the real world. The subspace-based outlier detection is regarded as a feasible approach in very high dimensional space. However, the outliers found in subspaces are only part of the true outliers in high dimensional space, indeed. The outliers hidden in normalclustered points are sometimes neglected i...

متن کامل

Density-based Projected Clustering over High Dimensional Data Streams

Clustering of high dimensional data streams is an important problem in many application domains, a prominent example being network monitoring. Several approaches have been lately proposed for solving independently the di erent aspects of the problem. There exist methods for clustering over full dimensional streams and methods for nding clusters in subspaces of high dimensional static data. Yet ...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009